

Indikatoren

= Farbstoffe, die den sauren, neutralen oder basischen Charakter Lösung einer anzeigen.

Quelle: Michl et al., Chemie 10sg. Bamberg:

C.C.Buchner Verlag 2022, S. 93

= Maß für den sauren, neutralen oder basischen Charakter einer wässrigen Lösung.

Saure Lösung: pH < 7 Basische Lösung: pH > 7 Neutrale Lösung: pH = 7

> Ein pH-Wert-Unterschied von 1 entspricht einer 10-fachen Verdünnung.

C_{NTG} 10.2

C_{NTG} 10.1

Säure:

- Protonendonator (gibt H⁺ ab)
- Enthält immer ein polar gebundenes H-Atom
- saure Lösungen enthalten Oxonium-Ionen (H₃O⁺)

Säuren und Basen

pH-Wert

Base:

- Protonenakzeptor (nimmt H⁺ auf)
- Enthält immer ein nicht-bindendes Elektronenpaar
- basische Lösungen enthalten Hydroxid-Ionen (OH^{-})

C_{NTG} 10.3

Ampholyt

= Teilchen, das je nach Reaktionspartner als Säure oder als Base reagiert.

(Bsp.: $2 H_2O \rightleftharpoons H_3O^+ + OH^-$)

C_{NTG} 10.4

Neutralisationsreaktion

Neutralisationsreaktion Bei einer reagieren gleiche Stoffmengen Oxonium-Ionen und Hydroxid-Ionen miteinander zu Wasser-Molekülen. Dabei entsteht ein (gelöstes) Salz.

Neutralisationsreaktionen (stark) sind exotherm.

C_{NTG} 10.5

Stoffmengenkonzentration

 $c(X) = \frac{n(X)}{V(L\ddot{o}sung)} \left[\frac{mol}{L} \right]$

c = Stoffmengenkonzentration

n = Stoffmenge

V = Gesamtvolumen einer Lösung

C_{NTG} 10.6

Titration

= maßanalytisches Verfahren zur Bestimmung der Konzentration einer sauren/basischen Lösung.

Am Äquivalenzpunkt haben gleiche Stoffmengen von Oxonium- und Hydroxidionen miteinander reagiert. So kann die Stoffmengenkonzentration der unbekannten Lösung bestimmt werden.

C_{NTG} 10.7

Atome/Atom-Ionen: OZ entspricht der tatsächlichen Ladung

Moleküle/Molekül-Ionen: OZ entspricht der hypothetischen Ladung, die auf Grundlage der Elektronegativität ermittelt wird.

Oxidationszahl

C_{NTG} 10.8

Oxidation/Reduktion

Oxidation: Abgabe von Elektronen → Oxidationszahl wird erhöht

Reduktion: Aufnahme von Elektronen → Oxidationszahl wird erniedrigt

C_{NTG} 10.9

Brennstoffzelle

In einer Brennstoffzelle kann chemische Energie eines Brennstoffs direkt in elektrische Energie umgewandelt. Der Brennstoff wird kontinuierlich zugeführt.

C_{NTG} 10.10

Carbonsäureester

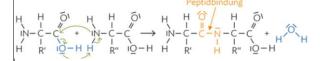
C_{NTG} 10.11

Carbonsäureester entstehen durch Kondensationsreaktionen aus Alkoholen und Carbonsäuren. Als Nebenprodukt bildet sich Wasser. Es handelt sich um eine Nukleophil-Elektrophil-Reaktion.

Nukleophil: Teilchen, die ein Elektronenpaar für eine neue Elektronpaarbindung zur Verfügung stellen können.

Elektrophil: Teilchen, die mit einem solchen Elektronenpaar in Wechselwirkung treten können.

Esterhydrolyse: Spaltung von Carbonsäureester in Wasser und Alkohol (sauer → reversibel, basisch→ irreversibel)



Allg. Aufbau:

Aminocarbonsäure

C_{NTG} 10.12

Peptidbindung:

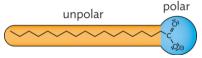
Quelle: Michl et al., Chemie 10sG. Bamberg: C.C.Buchner Verlag 2022, S. 166

Carbonsäureester, die durch Esterkondensation von Glycerin (Propan-1,2,3-triol) mit drei

Fettsäuren gebildet werden.

<u>Gesättigte Fettsäuren:</u> nur 1-fach-Bindungen <u>Ungesättigte Fettsäuren:</u> mind. 1 C-C-Doppelbindung (meist in Z-Konfiguration)

unpolare Moleküle → hydrophob



C_{NTG} 10.13

dossenberger

Verseifung: baseninduzierte Esterhydrolyse eines Fettes, wobei Salze der Fettsäuren (= Seife) entstehen

Tenside sind **amphiphil** (polar und unpolar) → Grenzflächenaktive Stoffe, Emulgatoren

Quelle: Michl et al., Chemie 10_{NTG} . Bamberg: C.C.Buchner Verlag 2022, S. 170

Seifen und Tenside

C_{NTG} 10.14

Glucose und Fructose

Quelle: Bast et al., Chemie 10_{SG}. Bamberg: C.C.Buchner Verlag 2022, S. 1162

C_{NTG} 10.15

Keto-Enol-Tautomerie

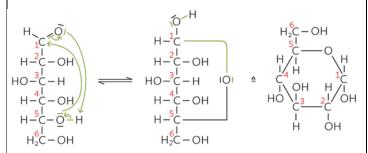
H = C = O = H C = O = O = H C =

Endiol-Form

Glucose-Molekül

 $C_{NTG}\ 10.16$

Quelle: Michl et al., Chemie 10_{sG}. Bamberg: C.C.Buchner Verlag 2022, S. 171



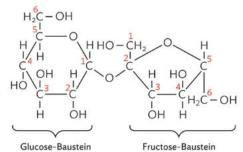
Ringschluss

(Nukleophile Addition)

 $C_{NTG} \ 10.17$

C_{NTG} 10.18

Quelle: Michl et al., Chemie 10_{SG}. Bamberg: C.C.Buchner Verlag 2022, S. 171



Disaccharide

(Saccharose)

Durch Vollacetal-Bildung:

Fructose-Molekül

Quelle: Michl et al., Chemie 10_{SG}. Bamberg: C.C.Buchner Verlag 2022, S. 172